¿Te has preguntado alguna vez cuántas estrellas podemos ver en el cielo? Si todas las personas del planeta se pusiesen de acuerdo para contar a lo largo de la misma noche todas las estrellas del cielo, llegarían al fantástico número de 9096.
Puesto que no disponemos del don de la ubicuidad y que sólo podemos ver la mitad de la bóveda celeste en un momento determinado, podemos aseverar que sólo podemos ver la mitad de la cantidad señalada, es decir, 4548 estrellas.
Esta cifra se la debemos a Dorrit Hoffleit y a su trabajo compilando lo que conocemos como el Bright Star Catalog. Este catálogo estelar recoge las estrellas de hasta la 6,5 magnitud, o lo que es lo mismo, todas aquellas estrellas que están dentro del límite de la visión humana.
Pues ya estaría respondida tu pregunta, ahora, si eres de las mías, una persona curiosa por naturaleza, te invito a seguir leyendo, porque hay mucha estrella que contar.
El mencionado Bright Star Catalog comprende todas las estrellas visibles a simple vista pero también los objetos celestes (como novas, supernovas y cúmulos) de ambos hemisferios que podemos ver a simple vista desde un cielo especialmente oscuro, lo que comúnmente conocemos como un cielo “sobaco de grillo”, por lo que el número total de objetos contenidos en este catálogo asciende a 9110.
Si nos situásemos en alguno de los polos geográficos siempre, en cualquier noche del año, veríamos las mismas 4548 estrellas, pues dichas estrellas no se ocultan bajo el horizonte.
Sin embargo, en una latitud intermedia, como puede ser la del estado norteamericano de Wyoming (la misma latitud que la península ibérica), veremos estrellas tanto del hemisferio norte como del hemisferio sur. Haciendo que, a lo largo del año, podamos observar unas 6800 estrellas; porque las estrellas más meridionales no las podemos ver desde dicha latitud ya que quedan ocultas bajo el horizonte.
¿Quién fue Dorrit Hoffleit?
Ellen Dorrit Hoffleit (12 de marzo de 1907 Florence, Alabama – 9 de abril de 2007 New Haven, Connecticut) fue una astrónoma reconocida, entre muchas otras cosas, por su labor a lo largo de 21 años como directora del Observatorio Maria Mitchell [MMO] y por las décadas de su vida que dedicó a mantener actualizado el Bright Star Catalog.
Hoffleit se enamoró de la astronomía con tan solo 12 años. Y no es para menos, pues contaba que pudo ver como una Perseida chocó contra un meteoro esporádico durante el verano de 1919, un evento que marcaría a cualquiera de nosotros.
Bright Star Catalog
Orígenes
Los orígenes del Bright Star Catalog los tenemos que buscar en el catálogo denominado Harvard Photometry, publicado en 1884 por el Observatorio de la Universidad de Harvard bajo la supervisión de Edward Charles Pickering (el mismo de las Computadoras de Harvard como Annie Jump Cannon, Henrietta Swan Levitt, Antonia Maury y Florence Cushman ¿no os eriza el bello al leer estos nombres?).
Este catálogo contenía unas 4000 estrellas de hasta magnitud 6,5 y sus datos se obtuvieron utilizando fotómetros de meridiano. Pero sólo contenía estrellas visibles desde el hemisferio norte.
Debido a esto, Pickering promovió el estudio de las estrellas visibles desde el hemisferio sur. Este estudio fue llevado a cabo por Solon Irving Bailey entre 1889 y 1891, dando como resultado la publicación del Harvard Revised Photometry en 1908.
La primera edición del Bright Star Catalog, basado en el Revised Harvard Photometry fue publicado en 1930.
Y la 5ª y última edición del catálogo fue publicado el 28 de Junio de 1991.
Contenido del catálogo
El catálogo de estrellas brillantes contiene todos los objetos, de magnitud 6,5 o más brillantes, es decir, todos aquellos objetos que podemos ver a simple vista. Exactamente 9110 objetos.
La abreviatura para este catálogo debiera ser BS o YBS (Yale Bright Star) pues fue creado en la Universidad de Yale, sin embargo se usa la abreviatura HR, siguiendo al catálogo predecesor, Harvard Revised Photometry Catalog.
En él podemos encontrar, según la 5ª edición de 1991:
- 9096 estrellas
- 11 novas o supernovas
- 4 objetos no estelares
- 2 cúmulos globulares: 47 Tucanae (HR 95) y NGC 2808 (HR 3671)
- 2 cúmulos abiertos: M67 (HR 3515) y NGC 2281 (HR 2496)
El catálogo en sí no es solamente un listado de objetos, el verdadero valor está en los comentarios a cada objeto. Si tenéis curiosidad podéis descargaros el catálogo con los comentarios desde este enlace.
¿Cuántas estrellas hay en el cielo?
Si alguna vez te preguntan ¿Cuántas estrellas hay en el cielo? Ya sabes que en total, podemos ver 9096 estrellas pero, una única persona a lo largo de una noche solo podría ver entre ~2300 y 4548 dependiendo de su latitud geográfica.
Eso sí, todas estas estrellas son visibles sin contaminación lumínica. En zonas semiurbanas el número desciende hasta las 446 estrellas. Y en zonas completamente urbanas, con suerte, podemos contar 35 estrellas.
Si utilizáis unos sencillos prismáticos de 50mm de apertura, la cifra de estrellas visibles asciende hasta más de 200.000 estrellas; un telescopio de 80mm de apertura eleva la cifra hasta casi los 6 millones de estrellas y con un telescopio de 250mm de apertura la cifra alcanza los 25 millones de estrellas.
¿Vosotros cuántas podéis ver?
¿Cuántas estrellas podemos ver en cielo utilizando un telescopio o unos prismáticos?
Fórmulas
El número variará en función de la apertura que usemos ¿o no?. Para ello vamos a utilizar la fórmula presentada por Sir Patrick Moore en The observational Amateur Astronomer, ed. Springer 1995. Según la cual, la magnitud límite de un instrumento dado viene definida por:
ML= 9,5 + 5,0 * Log10(D)
Donde D es la apertura expresada en pulgadas.
Por otro lado según Ira Sprague Bowen del Observatorio de Monte Wilson la fórmula sería:
ML= 8,8 + 5,0 * Log10(D)
Pulgadas | mm | Patrick Moore | Ira Sprague Bowen | Gerald North |
---|---|---|---|---|
1 | 25.4 | 9.5 | 8.8 | 10.7 |
2 | 50.8 | 11.0 | 10.3 | 12.0 |
3 | 76.2 | 11.9 | 11.2 | 12.8 |
4 | 101.6 | 12.5 | 11.8 | 13.3 |
5 | 127 | 13.0 | 12.3 | 13.8 |
6 | 152.4 | 13.4 | 12.7 | 14.1 |
7 | 177.8 | 13.7 | 13.0 | 14.4 |
8 | 203.2 | 14.0 | 13.3 | 14.7 |
9 | 228.6 | 14.3 | 13.6 | 14.9 |
10 | 254 | 14.5 | 13.8 | 15.1 |
11 | 279.4 | 14.7 | 14.0 | 15.3 |
12 | 304.8 | 14.9 | 14.2 | 15.4 |
13 | 330.2 | 15.1 | 14.4 | 15.6 |
14 | 355.6 | 15.2 | 14.5 | 15.7 |
15 | 381 | 15.4 | 14.7 | 15.9 |
16 | 406.4 | 15.5 | 14.8 | 16.0 |
17 | 431.8 | 15.7 | 15.0 | 16.1 |
18 | 457.2 | 15.8 | 15.1 | 16.2 |
19 | 482.6 | 15.9 | 15.2 | 16.3 |
20 | 508 | 16.0 | 15.3 | 16.4 |
Como podemos observar en tabla 1, generada utilizando dichas fórmulas, los valores resultantes son próximos. Por lo tanto, ¿qué fórmula es la adecuada?
Ninguna, estas fórmulas sólo toman en cuenta la apertura pero no tienen en cuenta ni la calidad del cielo, ni la experiencia del observador y ni siquiera los aumentos utilizados. ¡Incluso no valoran el nivel de oxígeno en sangre del observador!
Factores a tener en cuenta
Es evidente que la calidad del cielo, donde entra en juego la contaminación lumínica, el seeing y la transparencia, juega un papel muy importante a la hora de observar. El efecto más evidente lo vemos en un cielo cubierto de nubes, donde la transparencia es nula y por tanto el número de estrellas visibles puede ser cero.
El seeing desempeña un papel muy importante también, pues ese centelleo estelar puede difuminar las estrellas y hacerlas desaparecer de nuestra vista.
Y por último la contaminación lumínica hará que el contraste entre el fondo del cielo y las propias estrellas sea tan escaso que la luz de éstas se confunda con el fondo del cielo haciéndolas desaparecer a nuestros ojos.
La experiencia de los observadores también juega un papel muy importante a la hora de detectar las estrellas más débiles. Un ojo entrenado, observando a través de un telescopio, gana entre media y dos magnitudes con respecto a una persona sin ningún tipo de experiencia observando (B. E. Schaefer sobre O´Meara, Telescope limiting magnitudes, NASA-Goddard Space Flight Center, Code 661, Greenbelt, Maryland 20771).
Por otra parte, los aumentos aplicados son también un factor a tener en cuenta pues éstos, a medida crecen en número oscurecen el fondo del cielo, haciendo así que el contraste entre las estrellas y fondo del cielo aumente. Cierto es que existe un límite superior que no conviene rebasar. Al pasarnos de aumentos pueden ocurrir dos cosas, la turbulencia se hace tan patente que las estrellas se difuminan contra el fondo del cielo o los propios anillos de difracción difuminan la estrella, haciéndola de nuevo desaparecer.
Y por último, se ha comprobado que una hiperventilación o una administración de oxígeno puro, aumenta nuestra capacidad para detectar estrellas débiles.
Es muy interesante el artículo a este respecto de Bradley E. Schaefer sobre la magnitud límite de los telescopios que podréis encontrar en la bibliografía al final de este artículo; en él se habla de todos estos factores que he comentado a vuela pluma.
En dicho artículo se muestra una fórmula que sí toma en cuenta todos estos factores:
mz = 8,68 — 2,5log(Fs) – 1,2 kv, – 5log(1 + 0,158BS0.5)
En el artículo enlazado en la bibliografía se desgrana la fórmula.
Y que muy amablemente Gerald North ha aproximado, de manera que solo contemos, de nuevo con la apertura:
mv = 4,5 + 4,4 log10 D
Siendo D el diámetro de la apertura de nuestro telescopio expresado en nuestros amados milímetros y no esa cosa tan rara de las pulgadas.
Cuántas estrellas podemos ver
Llegados a este punto en el que nos hemos aproximado a la magnitud visual límite de nuestros telescopios, toca saber cuántas estrellas podremos ver a través de ellos.
Está en la propia naturaleza del ser humano clasificar, cuantizar, medir y comparar todo aquello que le rodea y, el número de estrellas que pueblan el firmamento no va a ser menos.
Y por eso tenemos una miríada de catálogos estelares creados desde tiempos inmemoriables. Como ejemplo tomaré el Catálogo Tycho 2 que cubre casi la totalidad de estrellas hasta magnitud 10,5 y a partir de dicha magnitud usaremos una aproximación matemática.
Es decir a partir de la undécima magnitud usaremos la fórmula planteada por SpaceMath de NASA:
Log10N(m) = -0.0003 m3 + 0.0019 m2 + 0.484 m – 3.82
Válida para magnitudes de entre +4,0 y +25. Por ejemplo, para un valor de +6.5 (magnitud límite del ojo humano) nos da un valor de 0,21 estrellas por grado cuadrado del cielo y sabiendo que una esfera tiene 41253 grados cuadrados, esto arroja un resultado de ~8696 estrellas (no es un valor demasiado alejado de las 9096 estrellas del catálogo HR)
En la siguiente tabla podemos ver el número de estrellas correspondiente a según qué magnitud tanto del catálogo Tycho II como la aproximación matemática para aquellos valores ausentes en el catálogo Tycho II. Además, he añadido una columna central con el acumulativo de estrellas.
Magnitud | Número de estrellas Tycho II | Acumulativo | Aproximación Matemática |
---|---|---|---|
-1 | 2 | 2 | |
0 | 6 | 8 | |
1 | 14 | 22 | |
2 | 71 | 93 | |
3 | 190 | 283 | |
4 | 610 | 893 | |
5 | 1 929 | 2 822 | |
6 | 5 946 | 8 768 | |
7 | 17 765 | 26 533 | |
8 | 51 094 | 77 627 | |
9 | 140 062 | 217 689 | |
10 | 409 194 | 626 883 | |
11 | 1 518 248 | 891 365 | |
12 | 3 802 035 | 2 283 787 | |
13 | 9 418 402 | 5 616 368 | |
14 | 22 620 883 | 13 202 481 | |
15 | 52 163 947 | 29 543 064 | |
16 | 114 833 347 | 62 669 400 | |
17 | 240 336 760 | 125 503 413 | |
18 | 476 632 307 | 236 295 547 | |
19 | 893 171 179 | 416 538 872 | |
20 | 1 577 800 566 | 684 629 387 |
Conclusión
Un ejemplo para ilustrar lo que hemos visto. Para un telescopio de 250mm de apertura (ó 10 pulgadas) cuya magnitud límite aproximada es 15.1, podríamos llegar a ver en condiciones ideales unos 52 millones de estrellas.
¿Cuántas estrellas podéis ver vosotros con vuestros equipos?